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Abstract: 

The paper features a theoretical model for computing the speed of sound and the 

viscosity in the real gas phase of pure refrigerants and their mixtures. To calculate the 

viscosity of real fluids models on basis of the  Lennard-Jones intermolecular potential 

with simultaneous consideration of the influence of multipole moments have been 

applied.  
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1. INTRODUCTION 

In technical practice fluid mechanics processes are of vital importance. The 

mathematical theory of chaos may in the future contribute to our understandings of 

turbulent flow. At this time in practical engineering for the prediction of turbulence is 

almost in all cases used the classical models such as k-ε or k-ω model. Today are on the 

market many excellent models (CFX, FIRE, IDEAS,….) for the use in fluid 

engineering. One of the main problems of presented models is hidden in relatively weak 

database of thermophysical properties. Almost in all cases are thermophysical 

properties represented as constants independent on the temperature and pressure field. 

In this paper we try to present the importance of thermophysical properies for the 

studying of advanced fluid mechanics. 

In order to design devices of this field of activity, it is necessary to be familiar with 

the equilibrium and nonequilibrium thermodynamic properties of state in a one and two 

phase environment for pure compounds and their mixtures.  

In these paper we developed the mathematical model of computing the transport 

properties of state.   

 

2. VELOCITY OF SOUND 

In this paper our interest is focused on the calculation of speed of sound. The speed 

of  sound refers to the speed of the mechanical longitudinal pressure waves propagating 

through a medium. It is a very important parameter in the study of compressible fluid 

flows  and in some applications (acoustic resonance level gauge). 

The propagation of sonic waves for real fluids is almost in all cases nearly 

isentropic. Therefore, we can calculate the isentropic speed of sound for  a real fluid  c0: 
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where M is the molecular mass, S is the entropy and ψ is the molar concentration. 

 

3. INTERMOLECULAR FORCES 

Molecules are composed of positive and negative charges. According to Coulomb’s law  

of electrostatics the charges interact and the interaction energy between the molecules 

in the system is called intermolecular energy. Hence, we say that intermolecular forces 

are of electrostatic nature.  

The analytical computation of intermolecular potential is extremely complex [1-

4]. As far as certain simple systems are concerned the problem is soluble, although the 

equations thus obtained are very complicated. This is why further analytical solutions of 

a configuration integral is exceptionally difficult. In general, the assumption for the sum 

of repulsive (rep) and attractive (att) force is sufficiently accurate. If the intermolecular 

potential is denoted by u then the equation below can be written as: 

 attrep uuu +=        (2) 

The occurrence of the repulsive force is associated with the Pauli exclusion 

principle. If two molecules approach one another within a very short distance, so that 

the electronic clouds of both mlecules begin to coincide, certain electrons in the 

molecule have to move to higher energy levels due to the exclusion principle, made 

possible only through the supply of sufficient energies, resulting in the occurrence of 

the repulsive force.  
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4. IMPACT OF ANISOTROPIC POTENTIALS ON THERMODYNAMIC 

FUNCTIONS OF STATE 

There are several methods to compute the influence of anisotropic potentials [9-27]. In 

the present paper those models were used which yielded favorable results in practical 

computations for a large number of components and within a relatively wide range of 

densities and temperatures.  

Using the perturbation expansion around the reference potential one can then write the 

configuration effect to the free energy as: 

 TNk
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The free energy of Lennard-Jones’s fluid ALJ was calculated using the Johnson-Zolweg-

Gubbins’s (JZG) model [5]. 

 We consider rigid nonlinear molecules [1] with enough symmetry so that the 

principal axes of the quadrupole tensor coincide. The multipole expansion is terminated 

at the quadrupole term. Intermolecular repulsion interaction is modeled by the Lennard-

Jones r-12 law. The induction interactions are formulated in the isotropic polarizibility 

approximation. Intermolecular interactions are limited to the second-order term, and 

cross terms between intermolecular interactions are not considered. 
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Second order terms: 

Multipole forces: 

( )

( ) ( )

( )( ) ( )

( )( ) ( )
























+++++

+++++

++

−=







−

7
2

z
2

y
2

x
2

z
2

y
2

x

5
2

z
2

y
2

x
2

z
2

y
2

x

3

22
z

2
y

2
x

2

multmultλλ

σ
10Jθθθµµµ

45
56

σ
8Jθθθµµµ

3
4

σ
6Jµµµ

3
2

VkT
πN

NkT
A .(5) 

 

Inductive forces: 

indind

B

λλindind

A

λλindindλλ

NkT
A

NkT
A

NkT
A

−−−









+








=








.  

( )

( ) ( )

( ) ( )

( )( ) ( )

( )

( ) ( )










































+++

















−−−

++
+

+++++

+++

++

−=







−

13

22
z

2
y

2
x

11
yx

2
zzx

2
yyz

2
x

2
z

2
z

2
y

2
y

2
x

2
x

11
2

z
2

y
2

x
2

z
2

y
2

x

11
2

z
2

z
2

y
2

y
2

x
2

x

9

22
z

2
y

2
x

2
2

indind

A

λλ

σ
16Jθθθ

315
24

σ
14J

θθµ
8
5θθµ

8
5θθµ

8
5

θµθµθµ

4725
1024

σ
14Jθθθµµµ

315
32

σ
14Jθµθµθµ

25
24

σ
12Jµµµ

45
2

α
kTV

9Nπ
NkT
A .(6) 



 

7 

( )

( ) ( )

( ) ( )

( )( )

( ) ( )

( )

( ) ( )














































+++



















−−

−++

+++

+++++

+++

+++

−

=







−

12

22
z

2
y

2
x

10

yx
2

zzx
2

y

yz
2

x
2

z
2

z
2

y
2

y
2

x
2

x

12
2

z
2

y
2

x

10
2

z
2

y
2

x
2

z
2

y
2

x

8
2

z
2

y
2

x

10
2

z
2

z
2

y
2

y
2

x
2

x

22
2

22

indind

BB

λλ

σ
4,8,8Lθθθ

441
16

σ
3,7,7L

θθµ
8
5θθµ

8
5

θθµ
8
5θµθµθµ

4725
2048

σ
2,8,8Lθθθ

2205
256

σ
L(2,6,8)θθθµµµ

315
64

σ
2,6,6Lµµµ

45
4

σ
1,7,7Lθµθµθµ

25
48

ασ
VkT

N9π

TNk
A

 (7) 

The structural properties of the Lennard-Jones potential are introduced via the J and L 

integrals expressed as: 
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where gLJ  and 3LJg  are pair and triplet radial distributions function3 for the LJ 

potential, ( )1lP φcos  is the Legendre function and 1φ  is the internal angle at molecule 1 

for the triangle formed by molecules 1,2 and 3.  

   The J and L integrals are calculated by numerical integration over tabulated pair 

correlation functions. We calculated the J and L integrals with the help of simple 

interpolation equations:Nicolas-Gubbins-Street-Tildesley [1] (LG). 
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5. MIXTURES 

The thermodynamic properties of real  mixtures are obtained using the one-fluid theory 

[1-4]. The molecules interacting with Lennard-Jones potential have parameters σ and ε 

given by: 

     3
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j,i
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We calculated all other important parameters with the help of the following mixing rule. 

For  some general parameter K we can write: 

    ∑=
i

iiKψK       (11) 

 

6. KINETIC THEORY OF DILUTE POLYATOMIC GASES 

The kinetic theory of dilute gases assumes a macroscopic system at densities low 

enough so that molecules most of the time move freely and interact through binary 

encounters only. Neverthless, the densities are high enough to ensure that the effects of 

molecule-wall collisions can be neglected compared to those from molecule-

moleculeencounters. It is woth nothing in this paper the terms “dilute” or “low-density 

gas” represent a real physical situation, whereas the frequently us expression “zero-

density limit” is related to results of a mathematical extrapolation of a density series of 

a particular transport property at constant temperature to zero density. This paper is 

predominantly concerned with the transport properties of fluids of practical 

significance. This means that attention is concentrated upon systems containing 

polyatomic molecules and upon the traditional transport properties such as the viscosity 
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and thermal conductivity. The ease of the practical evaluation of the transport properties 

of a dilute gas by means of these relationships decreases as the complexity of the 

molecules increases. Thus for a pure monoatomic gas, with no internal degrees of 

freedom, the calculations are now trivial, consuming minutes on a personal computer. 

For systems involving atoms and rigid rotors the computations are now almost routine 

and take hours on work stations. For systems that involve molecules other than rigid 

rotors the theory is still approximate and calculations are heuristic. 

 

The background transport properties for pure gases are represented as sums of terms for 

the temperature-dependent dilute-gas contributions and terms for the temperature- and 

density-dependent residual contributions. Contribution for the critical enhancement are 

not included in these background functions.  

From the Boltzmann equation we can for mono-atomic dilute gases calculate transport 

properties not far from the Maxwellian [6]. Thease means, that we treat transport 

phenomena with small temperature or velocity gradients of the molecules. On thease 

base we can express viscosity and thermal conductivity for single-component gas: 
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where M is molecular mass of the molecule, and Ω(l,s) is the transport collision integral. 

For Leenard-Jones intermolecular potential is almost impossibly obtain collsision 

integrals analytically. Because of difficulty of calculating these integrals, their values 

are usually taken from published tables. To make computerized calculations more 

convenient and to improve on the accuracy obtainable by linear interpolation of the 
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tables we used Neufeld [7] et al. empirical formulation, obtained on the base of 

numerical simulations and interpolation procedure.  

     ( ) ( ) ( ) )PSTsin(RT
HTexp
G

FTexp
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DTexp
C
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A W*B*
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)s,l( −++++=Ω   (13) 

This Equation contains 12 adjustable parameters and is developed for 16 collision 

integrals. 

For  the calculation of transport properties for polyatomic molecules in principle, a 

quantum mechanical tratment of processes is necessary to account for the changes of 

internal state. The fully quantum mechanical kinetic theory of polyatomic gases  is 

based on Waldman-Snider [6,8] equation and summarized by McCourt and coworkers. 

Wang-Chang and Uhlenbeck and independently by de Boer (WCUB) formulated a 

semiclassical kinetic theory. The quantum mechanical theory has the advantage that it 

can treat the degeneracy of rotational energy states and is therefore able to describe the 

effect of magnetic and electric fields on the transport properties. The disadvantage of 

this theory for practical applications is that it is only formally established for gases with 

rotational degrees of freedom. On the other hand, the semiclassical theory has the 

advantages that it treats all forms of internal energy and is the semiclassical limit of the 

quantum mechanical approach. In the presented paper we used simple expressions for 

taking into account rotational contributions. Internal modes have, at relatively low 

temperatures, almost no influence on viscosity and relatively high influence on thermal 

conductivity. 

The dilute gas viscosity is obtained from kinetic theory assuming that a Lennard-Jones 

(LJ) potential applies and using the expression: 
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where η is in Pa s, M is the molecular mass in gmol-1, T is in K, Ω(2,2) is a collision 

integral and σ is the Lennard-Jones parameter. 

 

1. Holland-Hanley model (HH) [9,10]. The viscosity of dense Lennard-Jones fluid is 

found using [9] 
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where ηex is excess viscosity due to high density contribution. 
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In Eq. (45) are coefficients a1..a7 empirical data dependent on substance. 

 

2. In the presented paper will be presented Chung-Lee-Starling model (CLS) [11-

13].  Equations for the viscosity  and the thermal conductivity are developed based on 

kinetic gas theories and correlated with the experimental data. The low-pressure  

transport properties are extended to fluids at high densities by introducing empirrically 

correlated, density dependent functions. These correlations use acentric factor ω, 

dimesionless dipole moment µr and an empirically determined association parameters to 

characterize molecular structure effect of polyatomic molecules κ, the polar effect and 

the hydrogen bonding effect. In this paper are determined new constants for fluids.  
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The dilute gas viscosity for CLS model is written as: 
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The factor Fc has been empirically found to be [12]: 

κ+µ+ω−= 4
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where ω is the acentric factor, µr relative dipole moment and κ is a correction factor for 

hydrogen-bonding effect of associating substances such as alcohols, ethers, acitds and 

water. 

For dense fluids Eq. (14) is extended to account for the effects of temperature and 

pressure by developing an empirically correlated function of density and temperature as 

shown below: 
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The constants A1-A10 are linear functions of acentric factor, reduced dipole moment and 

the association factor 
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κ+µ+ω+= )i(a)i(a)i(a)i(aA 3
4
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where the coefficients a0, a1, a2 and a3 are presented in the work of Chung 2t al [11]. 

THE PREDICTION OF VISCOSITY OF GAS MIXTURES 

For the determination of viscosity for dense gas mixtures we have used purely 

analytical model.[1,14] According to this theory the viscosity of dense gas mixtures 

containing N components can be written in the form: 
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where ρ is the molar density, ψi and ψj are mole fractions of species i and j, and Mi and 

Mj are their molecular masses. *
ijA  is a weak function of intermolecular potential for i-j 

interactions. The symbol ηi represents the viscosity of pure component i and ηij 

represents the viscosity of i-j interaction. 

 

RESULTS  AND COMPARISON WITH EXPERIMENTAL DATA 

Tables 1 and 2 show the difference in  the speed of sound, for a mole fraction mxture 

of 70% methane and 30% carbon dioxide in the real gas region, calculated by models 
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based on isotropic statistical thermodynamics (JZG), non-isotropic models obtained 

from the perturbation part of the reference Lennard-Jones potential (JZG-LG) and 

models obtained by classical thermodynamics (BWR, BWRSN). In comparison with 

experimental results42 somewhat larger deviations can however be found in the high-

pressure region due to the large influence of the higher order multipolar, dispersion 

forces. On the basis of AAD (Table 1), we can conclude that the best results come from 

the JZG-LG model. 

Due to spherical symmetry the molecules of methane have no dipole and quadrupole 

moments. The linear molecules of carbon dioxide, on the other hand, have a relatively 

very high effect of non-isotropic interactions resulting from the quadrupole moment.2,3 

Nevertheless, the results obtained by means of the JZG model show only about a 2% 

AAD (Table 1) due to a relatively small mole fraction of carbon dioxide. Table 2 shows 

ARVS in relation to pressure and temperature.  

Analytical results are presented also as a function of the average absolute deviation – 

AAD and the absolute  ratio of the speed of sound (ARVS)presented as: 
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c

cc
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where c0isotropic is the speed of sound obtained on the base of LJ (JZG) model. The 

greatest effect of non-isotropic interactions is found in the low temperature and high 

pressure region, where the contribution of non-isotropic interactions to the speed of 

sound is even higher than 4%.  

Figures 1-3 show the deviation of the results for R32, R125 and mixtures R410A in 

the real gas region between the analytical computation (HH-Holland-Hanley model, 

CLS-Chung-Lee-Starling model and analytical results compared with REFPROP model 
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(version 23-7). The results for all models obtained by statistical thermodynamics show 

relatively good agreement. The computed  viscosity conform well well for both models, 

obtained by statistical thermodynamics. The CLS model yield surprisingly good results. 

 

CONCLUSION AND SUMMARY 

The paper presents the mathematical model for computation of the velocity of sound 

in the fluid region. 

For the real fluid, the Johnson-Zollweg-Gubbins model based on molecular dynamic 

and Lennard-Jones simulations and modified Benedict-Webb-Rubin equation of state 

(MBWR) was applied. In this paper are multipolar and induction interactions calculated 

with help of quantum mechanical calculation of the intermolecular energy function with 

help of Lucas-Gubbins perturbation theory. The multipole expansion is terminated at 

the octopole term. 

The analytical results are compared with the experimental data obtained by dynamic 

light scattering technique, and they show a very good agreement. 

   The paper also presents the mathematical model for computation of viscosity in the 

liquid,  and  gaseus state.  

The analytical results are compared with the dynamic light scattering  and show 

relatively good agreement. In the region of real gases the results are an equally good 

match.  
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Table 1. Comparison  between analytical results and experimental speed of sound 

data for mixture of 70% R 50 and 30% R 744. 

 

*
Temp. Model 10 bar 20 bar 

c0 (m/s)

60 bar 100 bar AAD* (%) 

250 K JZG 329 323 301.6 300 0.022364 

 BWR 332.4 315.2 277.5 272.1 0.047959 

 BWRSN 332.3 314.9 282.9 323.7 0.021633 

 JZG-LG 329.8 323 288.8 313.1 0.006061 

 Exp.42 329 319 290 311.5  

*AAD= average absolute deviation 

 

 

Table 2. Influence of absolute ratio speed of sound (ARVS)  for a mixture of 70% 

R 50 and 30% R 744 (JZG-LG  model). 

ARVS 

 10 bar 20 bar 60 bar 100 bar 

250 K 0.002432 0.000929 0.04244 0.043667

300 K 0 0.000279 0.001141 0.000859

350 K 0 0 0.00026 0.000517
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FIGURE CAPTIONS: 

Fig 1: Kinematic viscosity of R32 in the region of saturated vapour 

Fig 2: Kinematic viscosity of R125 in the region of saturated vapour 

Fig 3: Kinematic viscosity of R410A in the region of saturated vapour 
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FIGURES 

 
 

R32- saturated vapour

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

233 243 253 263 273 283 293 303 313 323 333

Temperature (K)

R
el

at
iv

e 
de

vi
at

io
n 

of
 k

in
em

at
ic

 v
is

co
si

ty

CLS HH

 
 
 

Fig 1: Kinematic viscosity of R32 in the region of saturated vapour 
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R125 saturated vapour
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Fig 2: Kinematic viscosity of R125 in the region of saturated vapour 
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R410A saturated vapour
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Fig 3: Kinematic viscosity of R410A in the region of saturated vapour 

 
 


